UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9700 BIOLOGY

9700/42

Paper 42 (Theory 2), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9700	42

Section A

					nswers	Expected A	Question Expect		
									1
		1	kingdom			process or			
	Animalia	Plantae	Fungi	Protoctista	Prokaryotae	feature			
	\checkmark	✓	\checkmark	\checkmark	×	80s ribosomes			
	x ;	×	\checkmark	×	×	cell walls contain chitin			
	x ;	×	×	×	✓	circular DNA			
	√;	~	\checkmark	~		endoplasmic reticulum			
	× ;	×	×	✓	✓	most species unicellular			
	× ;	~	×	✓	✓	autotrophic			
	√;	×	\checkmark	\checkmark	\checkmark	heterotrophic			
	L]			ect row	each corre	one mark for			
	that row	o marks for	n award no	n a row the	ny blanks i	if there are a			
[Tot									
r ;	al harrior ·				choniem (isolating med		(-)	2
	arbanner,	ains / physi	al / mounta	geographica		loolaang moo		(a)	
	, a barner	ains / physi	al / mounta			type of speci		(a)	
				opatric;	iation – <u>alle</u>	-	1	(a) (b)	
			iountains ;	opatric ; arated by m	iation – <u>alle</u> lations sep	type of speci	1		
			iountains ;	opatric ; arated by m	<i>iation – <u>allo</u> lations</i> sep / gene flow	type of speci mouse popul			
		s;	ountains ;	opatric ; arated by m v, between	iation – <u>alle</u> lations sep / gene flow cur ;	type of speci mouse popul no, breeding	2		
s;	onditions ;	s; onmental) (ountains ; population rent (enviro	opatric ; arated by m v, between sures / differ	iation – <u>alle</u> lations sept / gene flow cur ; ection press	type of speci mouse popul no, breeding mutations oc	2 3		
s;	onditions ;	s; onmental) (ountains ; population rent (enviro les selecte advantageo	opatric ; arated by m v, between sures / differ lifferent alle ene pool / a	iation – <u>alle</u> lations sept / gene flow ccur ; ection press ge ; e.g. d change in g	type of speci mouse popul no, breeding mutations oc different sele genetic chan	2 3 4		
s;	onditions ;	s; onmental) (ountains ; population rent (enviro les selecte advantageo	opatric ; arated by m v, between sures / differ lifferent alle ene pool / a	iation – <u>alle</u> lations sept / gene flow cur ; ection press ge ; e.g. d change in g	type of speci mouse popul no, breeding mutations oc different sele genetic chan frequency / c	2 3 4 5		
s;	onditions ;	s ; onmental) e ed for / cha ous alleles	nountains ; population rent (enviro les selecte advantageo umbers ;	opatric ; arated by m v, between sures / differ lifferent alle ene pool / a omosome n	iation – <u>alle</u> lations sept / gene flow ccur ; ection press ge ; e.g. d change in g ifferent chro ; pulations ul	type of speci mouse popul no, breeding mutations oc different sele genetic chan frequency / c (results in) di	2 3 4 5 6		

PMT

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9700	42

3	(a)	(i)	condensation ;	[1]
		(ii)	1. <u>autolysins</u> ;	
			2. make holes in cell walls ;	
			3. in, growing / developing, bacteria ;	
			4. (antibiotic), inhibits / acts on, (another) enzyme ;	
			5. so peptidoglycan chains cannot link up / stops cross-links forming ;	
			6. cell wall becomes weaker / AW ;	
			7. turgor of cell not resisted (by cell wall) / AW ;	
			8. cell bursts ;	[4 max]
		(iii)	(glycoprotein) peptidase ; R other peptidase	[1]
	(b)		viruses have no cell wall ;	[1]
	(c)		assume gram+ unless otherwise stated	
		1	(gram+) penicillin can reach, cell wall / peptidoglycan, directly /AW / (gram-) ora ;	
		2	(gram-) outer membrane provides protection (from penicillin) / (gram+) ora ;	
		3	(gram+) more % peptidoglycan in wall (so greater effect from penicillin) / (gram-) ora ;	[2 max]

	Page 4		Mark Scheme: Teachers'	version	Syllabus	Paper
			GCE A/AS LEVEL – October/No	ovember 2009	9700	42
	(d)		accept antibiotic for penicillin and bac throughout	cteria for S. pneur	moniae	
		1	increase in resistance (throughout tin	ne period) ;		
		2	paired figs + units ;			
		3	overuse / misuse, of penicillin ;			
		4	some S. pneumoniae survive ;			
		5	mutation (in <i>S. pneumoniae</i>) ;			
		6	resistance, <u>gene</u> / <u>allele</u> ;			
		7	resistance passed to other bacteria;	e.g. plasmid trans	sfer	
		8	resistant strain, multiplies;	idea of many	/ produced	
		9	beta – lactamase produced ;			
		10	breaks down penicillin ;			
			point 7 accept vertical or horizontal tr point 8 accept vertical transfer only	ransfer		[5 max]
						[Total: 14]
4	(a)	(i)	1. yield for sorghum is greater than y	ield for wheat (in	any soil type) ;	
			2. yield for wheat is <u>better</u> in HWC so sorgham ;	il / little difference	e in yield for	
			3. paired figs ; only award it	f linked correctly t	o mp 1 or mp2	
			4. sorghum is adapted to live in arid	environment / AW	· ,	
			5. and 6. any two of the following ;;			
			feature fu	unction		
			extensive / deep, root system n	naximises water a	bsorption	
			curled leaves / leaves small surface area / wazy leaves / bulliform leaf cells / hinged leaf cells / reduced stomata numbers / stomata in pits	educes water loss	3	
			high silica content / more sclerenchyma / more strengthening tissue	educes wilting		
			I			[4 max]

	Page	5	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9700	42
		(ii)	number of <u>seeds</u> sown ;		
			density of <u>seeds</u> sown / area of plot ;		
			minerals / fertilisers ;		
			wind / shelter ;		
			soil pH;		[2 max]
	(b)		1. ref. bundle sheath cells;		
			2. light independent stage occurs / RuBP found (in bundle cells) ;	sheath	
			3. RuBP / rubisco, kept away from, air / oxygen ;		
			4. by mesophyll cells ;		
			5. limits uptake of O_2 / maintains high CO_2 concentration (i sheath cells) ;	n bundle	
			6. enzymes / PEP carboxylase, have high optimum tempe	rature ;	
			7. approx 45 [°] C ;		
			8. not denatured ;		[4 max]
					[Total: 10]
5	(a)		A – Leydig cell / interstitial cell ;		
			B – (wall of) seminiferous tubule ;		[2]
	(b)	(i)	1;		[1]
		(ii)	mark first two answers		
			E; A secondary spermatocyte		
			F; A spermatid		
			spermatozoan ;		[2 max]
		(iii)	cells grow in size / cells grow larger ;		[1]
	(c)	1	ATP production / provides energy ; R produces energy		
		2	(for) movement of <u>flagellum</u> ; R tail		
		3	(for) production of acrosomal enzymes ;		[2 max]

	Page 6			Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9700	42
	(d)	(i)	1. infectious disease causes damage ; A mumps / Chlamydia / STDs		
			2. lower sperm count / absence of sperm ;		
			3. damaged / abnormal / immobile / lazy , sperm ;		
			4. blocked sperm ducts / lack of seminal fluid ;		
			5. named genetic condition ; e.g. CF		
			6. autoimmune reaction to sperm ;		
			7. reduced testosterone ;		
			8. effect of chemical damage ; e.g. chemotherapy / hormor drinking water	nes in	[3 max]
		(ii)	(fertilisation of) <u>oocyte</u> by sperm ;		
			in glass dish ; A appropriate glassware R tes	t tube	
			AVP ; e.g. sperm injected into oocyte		[2 max]
		(iii)	1. ovulation less likely ;		
			2. (older) occytes less likely to be fertilised / occytes less v	/iable ;	
			3. implantation less likely (in uterus of older woman);		
			4. miscarriage rate increases (with age);		
			5. (as) lower concentration of hormones / unbalanced horm older woman) / start of menopause ;	nones (in	
			6. (as) genetic defects / mutations, increase (with age);		[3 max]
					[Total: 16]
6	(a)	(i)	ignore refs to function		
			<u>islets of Langerhans</u> ;		
			scattered throughout pancreas / AW ;		
			alpha and beta cells ;		
			blood supply (to carry hormones away) ;		[3 max]
		(ii)	<u>globular protein</u> ;		[1]

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9700	42
	(b)	1	it is identical to human insulin / fits membrane recepto cells ;	r on (target)	
		2	(more) rapid response ;		
		3	no / fewer, rejection problems / side effects / allergic re	eactions ;	
		4	ref. to ethical / moral / religious, issues ;		
		5	cheaper to produce in large volume / unlimited availab R cheap to produce	ility ;	
		6	less risk of, transmitting disease / infection ;		
		7	good for people who have developed tolerance to anir	<u>nal i</u> nsulin ;	[3 max]
					[Total: 7]
7	(a)		parents, carriers / heterozygous ;		
			child homozygous recessive ;		
			¼ / 0.25 / 25%, chance ;		
			mutation ;		[3 max]
	(b)	(i)	gene technology / genetic engineering / description ;		[1]
		(ii)	<u>glucagon</u> ;		[1]
		(iii)	low <u>blood glucose</u> concentration / during or after exerce R sugar	sise ;	[1]
	(c)		foreign / non-self / cell recognition ;		
			stimulates immune response / AW ;		[1 max]
	(d)		parental genotypes L ^M L ^N x	L ^M L ^N	
			gametes L ^M or L ^N L'	^M or L ^N ;	
			parental genotypes and gamete	es for one mark	
			offspring genotypes L ^M L ^M L ^M L ^N L ^M L	. ^N L ^N L ^N ;	
			offspring phenotypes MM MN MN	NN ;	[3]
			penalise once for omission of L		

	Page	e 8	Mark Scheme: Teachers' version Syllal		Paper
			GCE A/AS LEVEL – October/November 2009 970	0	42
	(e)		Canadian Inuit, allele frequencies / $L^{M}L^{N}$ ratio, different from oth high frequency of L^{M} / low frequency of L^{N} , compared to other populations ; R just highest L^{M} / lowe		
			less outbreeding / more inbreeding ;		
			AVP; e.g. L^{M} has selective advantage in Inuit environment		[3 max]
					[Total: 13]
8	(a)	1	stomata ;		
		2	air spaces (between cells) ;		
		3	thin cell walls ;		
		4	moist internal walls ;		
		5	<u>thin</u> leaf ;		
		6	cylindrical palisade cells ;		
		7	large surface area of, palisade / mesophyll, cells ;		[4 max]
	(b)		0.0025 / 2.5 x 10 ⁻³ ; A 0.003 only if 0.0025 in answer		[1]
	©	1	photosynthesis takes place ;		
		2	oxygen is produced ;		
		3	collects, inside disc / on surface of disc ;		
		4	disc, less dense / more buoyant ;		[3 max]
	(d)		rate of photosynthesis increases as light intensity increases ;		
			paired data quotes from columns 2 and 4 ;		[2]
	(e)	1	light intensity no longer limiting ;		
		2	carbon dioxide, concentration / rate of diffusion, now limiting;		
		3	temperature, too high / denatures enzymes ;		[2 max]
					[Total: 12]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9700	42

Section B: only one question to be answered.

9	(a)	1	acetyl CoA combines with oxaloacetate ;	
		2	to form citrate ;	
		3	4C to 6C ;	
		4	decarboxylation / CO_2 released ;	
		5	dehydrogenation / oxidation / release of hydrogen ;	
		6	reduced NAD produced / NAD accepts hydrogen ;	
		7	reduced FAD produced / FAD accepts hydrogen ;	
		8	ATP produced ;	
		9	substrate level phosphorylation ;	
		10	series of, steps / intermediates ; A many named steps off a diagram	
		11	enzyme catalysed reactions ;	
		12	oxaloacaetate regenerated ;	
		13	occurs in mitochondrial matrix ;	[9 max]
			accept diagram	
	(b)	14	coenzyme ;	
		15	for dehydrogenase ;	
		16	reduced ;	
		17	carries, electrons and protons / hydrogen / NAD	
		18	from Krebs cycle ;	
		19	and glycolysis ;	
		20	to ETC / electron carrier chain / oxidation ;	
		21	reoxidised / regenerated hydrogen removed ;	
		22	ATP produced ;	[6 max]
				[Total: 15]

PMT

	Page 10		Mark Scheme: Teachers' versionSyllabusGCE A/AS LEVEL – October/November 20099700	Paper 42
10	(a)	1	action potential / depolarisation, reaches presynaptic membrane;	
		2	(Ca ²⁺) channels open in <u>presynaptic membrane</u> / <u>presynaptic</u> membrane becomes more permeable to (Ca ²⁺) ; R calcium / Ca / Ca ⁺	
		3	Ca ²⁺ (flood) into presynaptic, neurone / knob ; R membrane	
		4	(this causes) vesicles of, acetylcholine / ACh ;	
		5	(to) move towards presynaptic membrane / (to) fuse with presynaptic membrane;	
		6	ACh released into synaptic cleft / exocytosis of ACh ;	
		7	ACh <u>diffuses</u> across (cleft) ;	
		8	ACh binds to receptor (proteins) / AW ;	
		9	on <u>postsynaptic membrane</u> ;	
		10	proteins change shape / channels open ;	
		11	sodium ions (rush) into postsynaptic neurone ; R membrane	
		12	postsynaptic membrane depolarised ;	
		13	action potential / nerve impulse ;	
		14	action of acetyl <u>cholinesterase</u> ;	[9 max]
	(b)	15	ensure one-way transmission;	
		16	receptor (proteins) only in postsynaptic, membrane / neurone ; ora	
		17	vesicles <u>only</u> in presynaptic neurone ; ora	
		18	adaptation / ACh amount reduces due to overuse of synapse ;	
		19	wide range of responses ;	
		20	due to interconnection of many nerve pathways ;	
		21	inhibitory synapses affect other synapses ;	
		22	involved in memory / learning ;	
		23	due to new synapses being formed ;	
		24	summation / discrimination ;	[6 max]
				[Total: 15]